PRE-CALCULUS REVIEW, Part 3 (Trigonometry) Concepts/Skills to know:

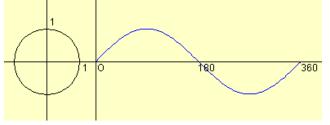
• Sketch and label a **right triangle**, mark the **right angle** and identify the **hypotenuse**.

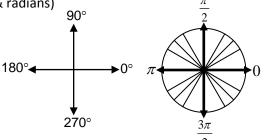
• Find values of trig ratios: $\sin \theta = \frac{opposite}{hypotenuse}$ $\cos \theta = \frac{adjacent}{hypotenuse}$ $\tan \theta = \frac{opposite}{adjacent}$ (fraction & decimal)

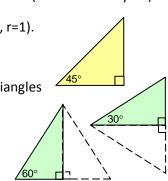
- Use Pythagorean theorem $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$ for any right triangle (**c** is the hypotenuse).
- Identify **initial side** and **terminal side** of **angle** θ (degrees & radians) on the coordinate plane and the **quadrant**.
- Define **radian** measure of angle.
- Sketch angles with various measures (degrees & radians) on the coordinate plane & identify how radian measure and degree measure are related to each other.
- Given point (x, y), find trig values for angle θ and r (distance from origin) on coordinate plane (Unit Circle, r=1).

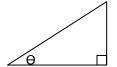
$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$

- Use Pythagorean Theorem $x^2 + y^2 = r^2$ for reference triangle of angle θ on coordinate plane (Unit circle: $x^2 + y^2 = 1$).
- Given angle θ and \mathbf{r} , find \mathbf{x} and \mathbf{y} values, and slope in the coordinate plane (Unit Circle, r=1).


$$y = r \cdot \sin \theta$$
 $x = r \cdot \cos \theta$ $slope = \frac{y}{x} = \tan \theta$


- Find **exact values** of sides of special **30°-60°** right triangles and special **45°-45°** right triangles by using **Pythagorean Theorem** and by **simplifying radicals**.
- Sketch reference right triangles for given angles in the **unit circle**.
- Find exact values for sinθ, cosθ, and tanθ of the unit circle on the coordinate plane. (Identify positive & negative coordinates.)
- Find ($\cos\theta$, $\sin\theta$) coordinate values for given angles (radians and degrees) in the unit circle.
- Complete a **table** of key values and graph **sine** and **cosine function waves** and their transformations. Use radian and degree angle measure, identify y-intercept, x-intercepts, and maximum & minimum values.
- Find angle measure by using inverse trig function and by graph
 (x is angle measure, degrees or radians, y is trig function value):


$$\sin(x) = y \iff x = \sin^{-1}(y)$$
$$\cos(x) = y \iff x = \cos^{-1} y$$


$$\tan(x) = y \iff x = \tan^{-1} y$$
$$\csc(x) = y \iff x = \csc^{-1}(y) = \sin^{-1}\left(\frac{1}{-1}\right)$$

$$\sec(x) = y \iff x = \sec^{-1}(y) = \cos^{-1}\left(\frac{1}{y}\right)$$
$$\cot(x) = y \iff x = \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right)$$

